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Total Jitter (TJ) at a low probability level can be measured directly only on a Bit Error 
Ratio Tester (BERT). Many engineers however resort to TJ techniques that are not BERT 
based, mainly because of the prohibitively long measurement times required for a brute-
force high resolution BERT scan. In this paper, we describe an optimized technique based 
on probability and statistics theory that enables accurate TJ measurements at the 1e-12 bit 
error ratio level in about twenty minutes at 10 Gbit/s. 
 
 

��������	���������	
Marcus Mueller is an R&D engineer with Agilent Technologies’ High Speed Digital Test 
segment, and focuses on the development and implementation of new test and analysis 
methods based on Agilent's high-speed bit error ratio testers. He joined Agilent 
Technologies in 2000, right after receiving his masters’ degree in environmental 
engineering from Stuttgart University, Germany. 
 
Ransom Stephens specializes in the analysis of electrodynamics in high-rate digital 
systems and the marketing of analysis tools developed by the Digital Signal Analysis 
division of Agilent Technologies. He joined Agilent Technologies in 2001 and received 
his Ph.D. in physics at the University of California, Santa Barbara in 1990. 
 
Russ McHugh is an application engineer at Agilent Technologies, working on high-speed 
analog and digital test equipment. His past experience includes data acquisition and 
computer aided test, and custom test systems in the Advanced Integrated Systems 
organization. Before that, he worked with test equipment for companies in solar energy 
and medical centrifuges. Russ holds bachelors and masters degrees from Stanford 
University in mechanical engineering. 



3 

������������	
Jitter, in the context of high-speed digital data transmission, is usually defined as the 
deviation of the decision threshold crossing time of a digital signal from its ideal value. 
Jitter describes a timing uncertainty, and therefore has to be considered when we look at 
the timing budget of a design. In one sense, jitter is just another component that makes 
part of the bit period unusable for sampling, just like setup- and hold-times. However, 
unlike setup- and hold-times that are usually thoroughly specified for logic families and 
can be taken from data sheets, jitter is a function of the design and has to be measured. 
 
Jitter is caused by a great variety of processes, for example crosstalk, power supply noise, 
bandwidth limitations, etc. Therefore there are many different categories of jitter. 
Depending on whom you ask, jitter is categorized as bounded and unbounded, correlated 
and uncorrelated, data-dependant and non-data-dependant, random and deterministic, 
periodic and non-periodic, to just name the most common ones. What is undisputed 
however is that all the different kinds of jitter add up to a quantity that is called Total 
Jitter (TJ). This is the quantity that you have to account for in your design, and this paper 
describes one way to measure it quickly and accurately. 
 
Our approach uses a Bit Error Ratio Tester (BERT), the only instrument available today 
that can directly measure TJ peak-to-peak values. Total Jitter measurement methods 
using BERT scans have been available for a long while, however the long measurement 
times required for a full scan limited the use to characterization applications where direct 
measurements with good accuracy are required. By careful use of statistics and 
probability theory, we were able to reduce measurement times by more than one order of 
magnitude. 
 
This paper is organized in four sections: in the first and second section, we recall the 
basics of jitter and Bit Error Ratio analysis, and introduce the necessary probability 
theory. Section three shows how full bathtub measurements are measured conventionally, 
and one common optimization. In the last section, we present the bracketing approach to 
Total Jitter measurement, and show two example implementations. 
 
������	

�����	���	�������	�����������	��	������	
There are two definitions of Jitter, an analog and a digital one. In the analog world, jitter 
is also known as phase noise, and defined as a phase offset that continually changes the 
timing of a signal: 
 ( ))()( ttPtS ϕ+=  
where S(t) is the jittered signal waveform, P(t) is the undistorted waveform, and )(tϕ is 
the phase offset, or phase noise. This definition is most useful in the analysis of analog 
waveforms like clock signals, and frequently used to express the quality of oscillators. 
In the digital world, we’re looking only at the 1/0 and 0/1 transitions of the signal, and 
jitter is therefore only defined when such a transition occurs. The jittered digital signal 
can be written as 

nnn Tt ϕ+=  



4 

where nt  is the time when the nth transition occurred, nT  is the ideal timing value for the 

nth transition, and nϕ is the time offset of this transition, also known as the timing jitter. 

Note that there are many possible choices for nT : physical quantities such as threshold 

crossings of a reference clock or a recovered clock, or arithmetic quantities, like multiples 
of the nominal bit duration at the given data rate. This is something to always keep in 
mind when making jitter measurements, since results can vary dramatically with the 
choice of the reference. A drastic example is Spread Spectrum Clocking (SSC), where 
low frequency jitter is deliberately introduced to keep emissions in regulated frequency 
bands below the allowed maximum; a jitter measurement that uses a clean, non-SSC 
clock as the reference will show the desired SSC as jitter. 
 
������	����������	
Every high-speed digital link in a design is subject to many jitter sources, each with 
different root causes, characteristics, and possible design solutions. Examples are: 

• Inter Symbol Interference (ISI), which is caused by attenuation and bandwidth 
limitations of a transmission structure. ISI is a function of the data rate, board 
layout and material, and the data pattern sent over the link. Most multi-gigabit 
designs today use transmitter pre-emphasis or receiver equalization to deal with 
this, and also limit the maximum run-length of continuous 1s or 0s by the use of 
8b/10b coding or the like. 

• Switching Power Supply Crosstalk, which is caused by an improperly decoupled 
power distribution on a PCB or inside of a chip package. The resulting jitter is 
periodic with a frequency that is typically many orders of magnitude lower than 
the data rate. 

• Noise, either thermal noise in the transmitter and receiver chips, or other noise 
coupled into the transmission structure. Jitter caused by noise usually has a very 
wide bandwidth. 

One widely accepted classification system divides Total Jitter (TJ) into Random Jitter 
(RJ) and Deterministic Jitter (DJ); DJ is then further divided into correlated Data 
Dependent Jitter (DDJ) and uncorrelated Periodic Jitter (PJ). Detailed descriptions on 
jitter categories and separation techniques can be found in [1], [2] and [3]. 
For most of the analysis in this paper, we will use a TJ mixture that consists of a random 
part and a periodic part only. The major difficulty of TJ measurement stems from the 
unbounded nature of RJ, and we wouldn’t gain any insight if we added a correlated term 
to the Deterministic Jitter. 
 
������	��	�	�� �	!�"���� 	
The analog jitter definition as a continuous function of time is a vivid one, so we’re going 
to use it in some places in this paper, even though we’re interested in digital jitter analysis 
mostly. We don’t loose anything by that, since we can simply sample it at regular 
intervals later. The Total Jitter continuous time waveform is the sum of all independent 
jitter component time waveforms: 

...)()()()( +++= tDDJtRJtPJtJ  
 



5 

 
   J(t)     =   PJ(t)  +      RJ(t) 

Figure (1) The Total Jitter time waveform is the sum of the individual components 
 
Figure (1) shows an example for a 10.0ps sinusoidal PJ with 2.0 MHz and a 1.5ps rms RJ, 
over an observation period of 1us. Since no instrument exists today that can directly 
measure the jitter time waveform, we’re using simulated data: a pure sine wave for PJ(t), 
and normally distributed random numbers for RJ(t). 
In order to assemble the timing budget for a design, we need Total Jitter as a single 
number in the dimension of time [s]. This is usually a peak-to-peak value, that is, the 
maximum value minus the minimum value: 
 ( ) ( ))(min)(max tJtJTJ PkPk −=  

The Total Jitter peak-to-peak for the example in Figure (1) turned out to be about 31ps. 
But unfortunately, this result is not a useful PkPkTJ value, because the RJ term describes 

an unbounded random process. This means that the observed min and max values and 
thus the PkPkTJ value get larger as we measure for a longer period of time. In the limit, the 

minimum is minus infinity and the maximum plus infinity, and PkPkTJ  thus infinity 

(twice). 
 
#����������	�������	$�������� 
The usual way to deal with such a problem is to make use of the fact that the individual 
terms are independent. Thus, we can build histograms or calculate the Probability Density 
Function (PDF) for the individual jitter components, and use a convolution operation to 
calculate the Total Jitter PDF: 
 ...)()()()( ∗∗∗= xDDJxRJxPJxJ  
The TJ peak-to-peak value is then the maximum non-zero probability PDF value minus 
the minimum non-zero PDF value. Figure (2) shows the PDFs for the example above; 

PkPkTJ  is 31ps, exactly the same value that we got from the time waveform. 

The PDF has two advantages over the time waveform: first, it can be measured directly 
on many different types of test equipment, for example sampling oscilloscopes, real-time 
oscilloscopes, and time interval analyzers. Second, the PDF of a Gaussian process is well 
known. 
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 J(x)     =   PJ(x)  *      RJ(x) 

Figure (2) The Total Jitter PDF is the convolution of the individual component’s PDFs 
 
Thus, we can calculate the Total Jitter PDF, if we know the RJ rms value and the PDFs of 
all other jitter components. The resulting TJ PDF however is still non-zero over the whole 
definition range, leading to the same infinite and thus meaningless PkPkTJ  reading that we 

got earlier. However, since we’re dealing with probabilities anyway, it’s easier to define 
the PkPkTJ  values as a function of some sort of probability level. 

 
�� �����"�	#����������	�������	$�������� 
Expressing TJ peak-to-peak as a function of a probability level can be done easily once 
we construct a Cumulative Probability Density Function (CDF), by integrating the PDF: 

 �
∞−

=
t

dxxPDFtCDF )()(  

The CDF tells us for each time value the probability that the transition happened earlier. 
TJ peak-to-peak for a probability level of y is then the time value where CDF=1-y/2, 
minus the time value where CDF=y/2. 
Figure (3) shows the TJ CDF for the example above. The TJ peak-to-peak value that 
includes all but 1e-3 of the population is 28.51ps, while PkPkTJ  for 1e-4 is 30.13. 

One important thing to note from Figure (3) is the fact that we don’t have any CDF 
values lower than 1e-5. This is because the plots were generated using 100,000 random 
floating-point values on a computer, and the lowest possible non-zero PDF and thus CDF 
value in this case is 1e-5. From this observation immediately follows that we need at least 
2/y samples if we want to directly calculate PkPkTJ  at probability level y from a measured 

PDF. For example, at the probability level of 1e-12 that is required by many standards, at 
minimum 2e12 samples need to be acquired. 
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Figure (3) The Total Jitter CDF, using log scale for probability axis 

 
�����	������	�����������	��� 	%�������	#�$�	
As we’ve shown in the last section, many samples are needed in order to directly 
calculate the PkPkTJ  value at low probability levels. Unfortunately, all test equipment 

existing today that can assemble PDFs from direct measurements or samples suffers from 
low sampling rates, and real-time oscilloscopes that have high sampling rates need many 
sampling passes because of memory limitations. At a sampling rate of 100kHz, 
acquisition of 2e12 samples takes more than 230 days, so even an improvement in 
sampling rate of a factor of 100 would still make the direct measurement impractical. 
Because of this limitation, TJ readings on oscilloscopes and time interval analyzers are 
usually extrapolated from a PDF that was measured using a much lower number of 
samples. Many assumptions are made in the extrapolations and, while they give estimates 
of TJ in seconds, the different techniques frequently give wildly inconsistent results. 
When there is no substitute for a genuine measurement without any assumptions it’s 
useful to remember that TJ can only be measured on a BERT. 
 
���	&����	'���� 
����������	
The quality of a digital transmission system can be expressed most naturally in terms of 
how many bits out of a transmitted sequence were received in error. This is usually done 
on a Bit Error Ratio Tester (BERT), a piece of test equipment that consists of a reference 
quality receiver, expected data generation, a digital compare mechanism, and counters for 
received bits and errors. During the test, received bits are compared to the respective 
expected bits; each compare operation increments the number of compared bits counter, 
and the error counter is incremented for every failed compare. 
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The main result of a test is the Bit Error Ratio (BER), which is defined as 

 
Bits

Err

N

N
BER =  

where ErrN  is the number of errors and BitsN  the number of bits. This equation is used 

both for measured and actual BER values; the measured value approaches the actual BER 
in the limit as ∞→BitsN . 

 
���	&����	'����	%������ ���	��	�	���� ���	#������	
The Bit Error Ratio measurement is a perfect example of a binomial process: for each bit 
that is received in the BERT’s error detector and compared against the expected data, 
there are exactly two possible outcomes: either the bit was received in error, or not. If we 
assume that the errors observed during a BER measurement are independent of each 
other, and if the conditions don’t change over time, we can model a BER measurement 
using the Binomial distribution: 

 ErrBitsBits NNN

ErrBits

Bits
BitsErrBinomial BERBER

NN

N
BERNNP −−⋅⋅

−
= )1(

)!(

!
),,(  

In most practical cases, we’re dealing with low Bit Error Ratios and high numbers of 
compared bits. For BER<1e-4 and BitsN >100,000, the Poisson distribution approximates 

the Binomial distribution within double precision numerical accuracy. It is considerably 
easier to evaluate, and has only one governing parameter µ , which is the average number 

of errors we expect to observe for a given BER and BitsN : 

 BitsNBER ⋅=µ  

The PDF of a Poisson distribution for a BER measurement experiment is then 

 ErrN

Err
ErrPoisson N

eNP µµ µ ⋅⋅= −

!

1
),(  

where ErrN  must be an integer, while µ  can be any non-negative real number. 
 

�������	��	���	&����	'����	%������ ����	
Knowledge of the Probability Density Function that describes BER measurements allows 
us to come up with accuracy estimates. As an example, we compare three BER 
measurements on a system with an actual BER of 1e-12, and vary only the number of 
compared bits: 

• BitsN  = 1e12 (µ =1). The probability of getting exactly one error in the test 

(which is equivalent to measuring the exact BER of 1e-12) is 0.3679 
• BitsN  = 1e13 (µ =10). The probability of getting 10 errors (BER=1e-12) is only 

0.1215.  
• BitsN  = 1e14 (µ =100). The probability of getting 100 errors (BER=1e-12) is even 

less, namely 0.0399.  
Does this mean that the results get better if fewer bits are compared? Exactly the contrary 
is the case. Figure (4) shows the discrete PDFs for the µ =1 and µ =10 cases. The 
absolute probability values are indeed higher for µ =1, but only because there are fewer 
possible outcomes. 
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Figure (4) Probability Density Functions for a Poisson distribution 

 with µ =1 (left) and µ =10 (right) 
 
Note how, for µ =1, the probability of observing zero errors (BER=0) is exactly the same 
as for observing one error (BER=1e-12). For µ =10 however, the probability of no error 
is almost zero (4.54e-5). Likewise, the probability of observing two errors for µ =1 
(BER=2e-12, double the actual value) is 0.1839, but the probability of observing 20 
errors in case of µ =10 (which is the same Bit Error Ratio) is only 0.0019. 

 
Figure (5) Normalized Probability Density Functions for Poisson distributions with µ =1, 

µ =10, and µ =100, in terms of Bit Error Ratio rather than ErrN  
 
If we repeat the same measurement over and over again, the observed ErrN  values are 

distributed with a standard deviation of µ . And while this value increases with µ , the 

spread in terms of BER decreases (remember that BER equals µ  divided by BitsN ). In 

Figure (5), we plotted the PDFs for three values of µ  (1, 10, 100), using the BER value 
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rather than ErrN  on the x-axis, and normalized the probability values to unity. The 
distribution of measured Bit Error Ratio gets narrower if we increase µ , which is 
equivalent to increasing the number of compared bits if the actual BER is constant. 
 
So far, we assumed that the actual BER is known, and derived accuracy estimates based 
on this knowledge. In a real life situation however, the actual BER is obviously unknown. 
So how can we get accuracy estimates after a measurement, when only BitsN  and ErrN  

are known? Fortunately, we can simply use ErrN  as an estimator for µ , and derive the 
standard deviation for the measurement from there. 
	
����������	(�"���	��	���	&����	'����	%������ ����	
Quite often, we don’t need to measure the exact BER, but can stop the measurement if we 
are certain that the BER is above or below a limit. In jitter tolerance test for example, we 
need to assert that the device under test operates with a BER better than for example 1e-
12; whether the true BER is 1.1e-13 or 2.7e-15 is irrelevant. 
 
Our confidence in such an assertion can be expressed in terms of a confidence level. A 
confidence level sets a limit on the maximum or minimum of the true value of a quantity, 
based on a measurement. If we compare 3.0e12 bits without getting errors, we can say 
that the BER is below 1e12 at the 95% confidence level. This example demonstrates the 
power of this approach: we measured a BER of zero, but using the number of compared 
bits and some sensible assumptions, we can be reasonably sure that the BER is lower than 
1e-12. How can those confidence levels be derived? 
 
Let’s make an example: if we compare 5e12 bits and get a single error, how confident can 
we be that the BER is <1e-12? The measured BER in this case is 0.2e-12, which indicates 
that the BER is indeed lower that 1e-12, but the measurement was made with a large 
uncertainty. Using the Poisson distribution, we can calculate the probabilities of 
observing zero or one error in 5e12 bits, assuming the BER is exactly 1e12. We evaluate 
P(0,5)=0.0067 and P(1,5)=0.0337, so the probability of observing zero or one error in 
5e12 bits if the BER is 1e-12 equals 4.04%. Our confidence that the BER is below 1e-12 
is then 95.96%, and we’ve thus set an upper limit on the Bit Error Ratio. 
 
Table 1 shows statistics for upper and lower limits on BER at a confidence level of 95%. 
In order to set an upper limit, we need to transmit at least y bits with no more than x 
errors. In order to set a lower limit, we need to detect at least x errors in no more than y 
transmitted bits. The numbers for the upper limits were derived in analogy to the example 
above, by solving  

 )95.01(),(
0

−=�
ErrN

ErrNP µ  

for µ ; the number of bits required for a given confidence level of 95% is then µ  divided 
by the target BER. Similarly, the numbers for lower limits can be derived by solving 

 95.0),(
0

=�
ErrN

ErrNP µ  
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Unfortunately, a closed solution for these equations doesn’t exist, but they can be solved 
numerically. A detailed description on an alternative method on how to compute 
confidence levels using a Bayesian technique can be found in [4]. 
 

95% confidence level lower limits,  
BER > 10-12 

95% confidence level upper limits,  
BER < 10-12 

Min number of 
errors 

Max number of 
compared bits 

(×1e12) 

Max number of 
errors 

Min number of 
compared bits 

(×1e12) 
1 0.05129 0 2.996 
2 0.3554 1 4.744 
3 0.8117 2 6.296 
4 1.366 3 7.754 
5 1.970 4 9.154 
6 2.613 5 10.51 
7 3.285 6 11.84 

Table 1: Statistics for lower and upper limits on BER of 10-12, on the 95% 
confidence level. To convert to BER of 1eN, just replace the exponent “12” with 

N. 
 

 
Figure (6) The 95% confidence level boundaries for upper (dark grey) and lower (light 

grey) limits on a BER of 1e-12 
 
Using the upper and lower limits given in Table (1), we can for each measurement check 
whether the BER is below or above 1e-12 at the 95% confidence interval. The minimum 
and maximum numbers of bits for low numbers of errors are shown graphically in Figure 
(6). Note that there is a wide gap where the BER is so close to 1e-12 that we can’t really 
decide. If we compared 3e12 bits for example, and got 2 errors (a measured Bit Error 
Ratio of 0.667e-12), we are in the “undecided” white area on the graph. 
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In such a case, we need to transmit more bits until the number of bits either reaches the 
upper limit (4.744e12), or until we see more errors. If the actual BER is very close to 1e-
12 however, we are unable to put a lower or upper limit on the BER, no matter how many 
bits we transmit. Whether such a test fails or passes entirely depends on the application. 
 
)� ���	#����	)����	��	�	���	&����	'����	������		
Almost every BERT existing today has the ability to set its reference receiver to arbitrary 
decision thresholds and sample delays. Figure (7) shows an eye diagram acquired on a 
sampling oscilloscope with the definitions of the sampling delay offset and threshold. 
Time values are often shown in unit intervals, which is just the reciprocal of the bit rate. 
For example, at 10Gbit/s, a unit interval equals 100ps. By definition, the optimum 
sampling point has a time offset of zero. Modern BERTs are able to find the optimum 
sample delay offset and threshold automatically, and all sample delay offsets are relative 
to this sample point. 
 

	
Figure (7) Eye Diagram measured on a Sampling Oscilloscope, with BERT sampling 
setup definitions. The nominal or optimum sample point is located in the middle of the 

eye diagram 
 
���	&����	'����	���	������	
Bit errors can be caused by either logic errors in the transmitter itself, or by amplitude 
noise and jitter seen by the receiver. Unfortunately, amplitude noise is indistinguishable 
from jitter, which is why all jitter measurement analyses assume that amplitude noise is 
negligible. Same for logic errors, if there is a source of not randomly distributed errors in 
a system, jitter analysis cannot work. 
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Jitter, in a standard BER test at the optimum sample point, causes bit errors if the jitter 
peak-to-peak value exceeds 1ui, so that the BERT receiver “sees” either the previous or 
the next bit. We can also cause error rates by moving the sample point towards the edge 
of the signal. If the sampling point is located exactly at the left edge (at –0.5ui), only the 
jitter value and the value of the neighbouring bit determines whether we see an error or 
not. The same is true at the right edge. Since we only observe an error if the neighbouring 
bit is different from the current one, the BER at this sampling point will be equal to half 
the transition density. 
 
�&'�	)���	#����	
The Total Jitter PDF is accumulated over many edge transitions, thus we can in turn place 
a TJ histogram on every edge. The BER vs. sampling delay offset is then the integral over 
the TJ PDF from the optimum sampling point to the left and to the right. Figure (8) shows 
an example, using the same jitter values that we used earlier, however this time with a 
rectangular PJ rather than a sinusoidal one. Note that the maximum BER in this example 
is 0.5, since we did the simulation for a random data pattern. Since the probability of two 
identical consecutive bits (the transition density) on a random data sequence is one half, 
we had to scale the CDF integral by 0.5. 

 
Figure (8) Schematic Eye Diagram (top), Jitter Histogram (middle) and BER vs. 

sampling delay offset (“bathtub curve”, bottom) in linear scale (left) and logarithmic 
scale (right), for a 10Gbit/s signal with 10ps PJ and 3ps rmsRJ  

 
Since the PDF is placed on the edge, BER is usually measured beyond the /-0.5ui offset; 
common values are +/-0.75ui. Such a curve is commonly termed a “bathtub curve”, 
because of its characteristic shape. 
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Since the BERT Scan curve is related to the Total Jitter Cumulative probability Density 
Function (CDF), we can derive PkPkTJ  values from it. One possibility would be to simply 

take the right hand side of the curve, and derive the peak-to-peak value from there, just as 
we did earlier with the CDF from measured histograms. But there is a much more 
intuitive possibility: we calculate the intersection of the left and right branch of the BERT 
scan curve with a BER threshold, and get the eye opening or phase margin at this 
particular BER level as the difference between the two. Then, the PkPkTJ  value equals the 

system period minus the phase margin. The beauty of this derivation is that we can 
immediately relate it to a timing budget: the TJ peak-to-peak value is the portion of the 
unit interval that is not available for sampling if we need a BER performance better than 
the BER threshold used in the calculation. 
Figure (9) shows the bathtub curve for the example above, in logarithmic scale and with a 
BER level of 1e-12. The intersections are at +/-24.48ps, so the phase margin is 48.96ps. 
With the system period of 100ps at 10Gbit/s, the Total Jitter peak-to-peak value equals 
51.04ps.  

 
Figure (9) BERT Scan or Bathtub curve in logarithmic scale 

 
Obviously, the lower the BER we select for the TJ calculation, the higher the TJ peak-to-
peak value will be. This is consistent with the results we got from our earlier TJ peak-to-
peak calculations where we used the measured CDFs. One important difference between 
the results however is that the BER Scan method automatically takes the transition 
density into account: if consecutive bits in a data sequence are identical, then jitter will 
not cause an error, leading to a lower TJ reading. This is a good thing in virtually all 
applications, since it is consistent with expectations from a timing budget standpoint. 
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Most jitter packages based on oscilloscopes or time interval analyzers available today 
plot bathtub curves, by integrating the extrapolated Total Jitter PDF. Those bathtub 
curves cannot possibly capture real bit errors; in fact, they will not even detect if you 
accidentally crossed data and data bar. Quite often, if chip timing is marginal, or if a rare 
digital logic error occurs in a design, bathtub curves can exhibit a BER floor, meaning 
that the BER is not zero in the middle of the eye. This indicates a severe design problem, 
and can only be observed on a BERT. If your BERT has capture memory or capture 
around error capabilities, you can even debug your design on the digital level, just as you 
would do with a logic analyzer. 
 
%��������	���	�������	���"� 
�����	$����	
The easiest way to measure a bathtub curve is to sample an identical number of bits at 
equidistant sampling locations. In order to get minimum statistical confidence, we need to 
measure at least ten times the reciprocal target bit error ratio. For example, in order to 
measure a bathtub curve down to 1e-12 we need to compare 1e13 bits at each sampling 
point. A bathtub curve at 10Gbit/s with a 1ps resolution then takes 41.67 hours. 
 
+� ���	��	&�����	,��� �-�����	
The accuracy of a Bit Error Ratio measurement increases with the number of errors that 
we observe. This means that we’ve measured the high BER portion of the bathtub, which 
we don’t actually need for the TJ measurement, with high accuracy. One common 
optimization for bathtub measurements is therefore to limit the acquisition to a certain 
number of errors, in addition to the number of bits. Then, all BER values where the 
number of errors is reached before the number of bits are measured with the same 
accuracy. Figure (10) shows the numbers of compared bits for the same bathtub curve as 
in Figure (8), using 1e13 compared bits and a 1ps delay resolution, for three different 
settings of the number of errors optimization. 
The number of errors optimizations cuts down measurement time in the area of the 
bathtub curve where error rates are high. This means that the total measurement time 
depends on how much jitter is present on the signal. Figure (11) shows how long a 
bathtub measurement with 1e13 compared bits and 1000 errors will take, as a function of 

rmsRJ  and for three different values of PkPkDJ . Measurement times decrease almost 

linearly with both rmsRJ  and PkPkDJ , and approach zero as the TJ goes to 1ui. 

Note that the durations given are average values, and will vary slightly due to the 
statistical nature of BER measurements. Also, we didn’t include the time required for 
moving the delay on a BERT and the minimum gate time. These numbers are usually 
very low however (in the millisecond range), so they don’t have much influence on 
measurement times for all practical cases. 
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Figure (10): Number of compared bits vs. sample delay, for a 1ps delay resolution at 10ps 

PkPkDJ and 3ps rmsRJ . The lower the number of errors setting, the fewer bits need to be 

compared 

 
Figure (11): Measurement Time vs. rmsRJ , for a 1ps delay resolution and three different 

PkPkDJ  values. The higher the Total Jitter, the faster the measurement 
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The major drawback of the number of errors optimization for the purpose of TJ 
evaluation is that most of the measurement time is spent in the middle of the bathtub, 
where the measured BER is zero. Since we take the TJ information from the intersections 
of the bathtub slopes with a BER threshold, this is unnecessary unless we want to verify 
that there is no (or a very low) BER floor. If we are purely interested in the TJ result, it is 
sufficient to find the sample delay offsets on the left and right slope of the bathtub curve 
where the BER is exactly 1e-12. We call these points Lx (1e-12) and Rx (1e-12). TJ peak-

to-peak is then simply the bit interval, minus the difference between Rx  and Lx . 
Unfortunately, since the BERT has a finite delay resolution, it is virtually impossible to 
set the sampling delay to exactly these points. And even if it was possible, we would need 
to observe an infinite number of bits to prove that the BER is really exactly 1e-12. 
 
����.�����	
�������	
Since we are unable to find a single point on the slope where the BER is exactly 1e-12, 
we relax our search goal to an interval that brackets it, in the sense that we are reasonably 
sure that the point where BER is equal to 1e-12 lies within the interval. In Figure (12), we 
have shown this for the left slope: we search for an interval [x-, x+] that brackets the Lx  
point, where x+ and x- are separated by no more than the desired delay step accuracy of 
the TJ measurement, ∆x. 
We don’t need to know the exact BER values at x+ and x-, it is sufficient to assert that 
BER(x-)>1e-12 and BER(x+)<1e-12 at a desired confidence level. If we choose 95%, we 
have determined that Lx (1e-12) is within the interval [x-, x+] with a confidence level of 

at worst 90%. For lack of better knowledge, we assume that Lx  is in the middle of the 

bracketing interval. Since the distance between x- and x+ is ∆x, Lx  is accurate to +/-

0.5∆x. Repeating the procedure for the right slope of the bathtub curve yields Rx  with the 
same accuracy, and we can calculate TJ peak-to-peak the same way we did before, with 

an accuracy of +/- x∆2 . 
 

 
Figure (12) Definitions for the bracketing approach, on the left slope lower BER region 
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There are many possible algorithms to search for the interval [x-, x+]. Things to keep in 
mind during the implementation of a fast Total Jitter measurement using the bracketing 
approach are: 

• Measurement times increase with decreasing BER, so that the search should be 
performed from left to right for the left edge, and from right to left on the right 
edge. The main goal of the search algorithm is to minimize the number of failed 
attempts to find x+. At 10Gbit/s it takes about 5min to compare 3e12 bits – the 
biggest investment in the process 

• Once x- has been determined, x+ is often within ∆x because of the steep slopes of 
the bathtub curve at low BER values 

• The search lends itself well to an iterative process. We continue to refine the 
search steps until we’ve reduced the interval to the desired accuracy. The 
measurement times can be traded in a well-defined way against measurement 
accuracy 

• In order to get better initial values for the search, it is a good idea to perform a 
relatively fast complete bathtub scan. From the data, we can get reasonable first 
guesses for x- and x+, either directly or by fitting an inverse error function to the 
data 

• If the device under test has a BER floor, the search can be stuck because the BER 
never gets below 1e-12. A robust implementation has to account for this. 
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In this section, we present a simple example implementation of the Fast TJ measurement 
algorithm, using a linear search with constant step size. 

1. Choose the desired uncertainty of the TJ measurement, δ TJ, and determine the 
delay step accuracy required for this: 

2
βδTJ

x =∆
 

2. Starting at the optimum sample point, move the BERT analyzer sample delay to –
0.75ui. 

3. Compare data until you observe at least one error, or until the number of 
compared bits exceeds 2.996e12. 

4. If you stopped because of an error, check the number of bits compared so far: 
  - if BitsN <0.05129e12, the BER is >1e-12 at the 95% level, and we set x- to the 

current delay. Increase the sample delay by ∆x, and continue with step 3. 
  - else, we are in the “undecided region”. Increase the sample delay by ∆x, and 
continue with step 3. If you end up here again, the bathtub either has a BER floor, 
or the slope of the bathtub is so gentle that we are unable to find x- and x+ that 
satisfy our accuracy requirement. 

5. If you stopped because you reached the 2.996e12 limit without a single error, the 
BER is lower than 1e-12 at the 95% confidence level, and we set x+ to the current 
delay. Calculate Lx (1e-12). We are done with the left slope, and continue with 
step 6. 
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6. Continue through steps 2 and 5, this time with an initial delay of +0.75, and with 
decreasing delay. This gives the x+ and x- values for the right slope of the bathtub 
curve. Calculate Rx (1e-12). 

7. Calculate TJ, measurement finished. 

 

 
Figure (13) Measurement Time vs. rmsRJ , for 1ps (top) and 5ps (bottom) delay resolution 

and three different PkPkDJ  values 
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Average measurement times for this implementation are given in Figure (13). Note that 
measurements times with the bracketing approach are not strictly repeatable, since at 
lower BER values the time until the first error is observed is randomly distributed. We’ve 
done the simulations using the average time between errors; variations will be averaged 
out in most real measurements. 
For low RJ values, the measurement is complete after about 10 minutes, independent of 
DJ. Because of the very steep slopes in low RJ situations, only one measurement at low 
BER needs to be done per slope. The measurement time is then dominated by the time 
required to compare 2.996e12 bits (5min), once per slope. This is independent on the 
delay resolution used: the minimum test time at 10Gbit/s is always 10min, no matter how 
coarse the resolution is. 
For increasing RJ values, measurement time goes up because more points are located on 
the slope of the bathtub curve. The saw tooth shape in this region is really an indication 
of the random variability of the measurement time: it entirely depends on how many 
points are located on the slope, and where. The lower resolution setting hits fewer points 
on the slope, so the measurement completes earlier with decreasing resolution. 
For high RJ values, test time quickly drops to almost zero, depending on the DJ value. If 
the total jitter exceeds 1ui, the bathtub is closed and the algorithm fails because no points 
with BER<1e-12 can be found. But this is detected fairly quickly, unlike in a 
conventional bathtub measurement. 
From Figure (13), we get an average measurement time of about 15-20 minutes, at 
10Gbit/s and with a 1ps delay step resolution. By comparison with Figure (11), we find 
that the bracketing approach reduces measurement times by about a factor of 40-100, 
depending on RJ and DJ values, and a good portion of luck. 
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Our second example implementation is more sophisticated: a full bathtub curve with a 
low number of bits that completes in a minute is used to get initial estimated as to where 
the bracket points might be. The actual brackets are then found by using binary search, 
dynamically adjusting the step size until the desired accuracy is reached. 
This example is given mostly to show what’s possible; the benefit in terms of 
measurement time saved over the simple implementation depends entirely on the shape of 
the bathtub curve. 

1. Choose the desired uncertainty of the TJ measurement, δ TJ, and determine the 
delay step accuracy required for this: 

2
βδTJ

x =∆
 

2. Measure a complete bathtub curve with a step size of ∆x, using 1e9 bits and 1e3 
errors 

3. Make your first guess for x−: to determine which of the delay settings can be used 
as your first guess for x− use Table 1. For example, if at the last time-delay setting 
of the fast bathtub two errors were observed, then Table 1 says that for two errors 
the maximum number of transmitted bits consistent with BER>1e-12 at the 95% 
confidence level is 0.3554e12; since 1e9 bits were transmitted we have BER>1e-
12 with much better than 95% confidence. Define x0 = x and set x− = x, the first 
guess for the left bracket. 
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Once x0 is defined, then data will be acquired at time-delay settings xn = x0 + nx, be 
prepared to keep track of the number of errors detected and bits transmitted at each of 
these delay settings, (NErrr, NBits). 
4. Try to get your first candidate for x+: Extrapolate the left slope of the bathtub 

down to 1e-12 by fitting a complimentary error function in the usual way (this is 
the standard bathtub plot technique for estimating TJ with a BERT). Determine 
the number of steps, n, from x0 that give xn closest to x′. That is, set n to the 
closest integer to (x′ − x0)/∆x (things should go a little faster if you err on the side 
of higher BER, that is, round down). Set the time delay to xn = x0 + n∆x. 

5. With the delay at xn, transmit bits until either an error is received or 2.996×1012 
bits are transmitted without an error. 

6. If an error is detected in step 5: use Table 1 to determine if you have a new lower 
limit, BER>1e-12. If you have a new lower limit, then set x− = xn and set n:= n+1 
and go back to step 5. If you can’t get a new lower limit, then continue to step 7. 

7. Tweener situation: If an error is detected in step 5 but the total number of errors 
for the number of transmitted bits at the delay xn is too small to give the lower 
limit, BER>1e-12, then we find ourselves in the gap between the shaded regions 
of Figure (6). This is the annoying “tweener situation” that almost never occurs 
but any decent algorithm must account for. While annoying, it’s not too bad a 
place to be because xn is probably very close to x(1e-12). 
Continue to transmit bits until you either get another error or have transmitted a 
total of 3.3e12 bits at xn. If you get an error go back to step 6, if you don’t, then 
you have between one and six errors, 1 ≤ Nerr ≤ 6, at xn and are firmly set in the 
tweener region and xn is the tweener-delay.  
The idea at this point is to make sure that xn is really consistent with x(1e-12). If 
so, then we’ll use it, if not, we’ll use something like it, but flag the result with a 
larger uncertainty and glean some useful information:  
  a)  If x- = xn-1 and x+� = xn+1, then set xL(10-12) = xn and go to step 9. 
  b)  If x- ≠ xn-1, then decrement n:= n�1 and go to step 4. 
  c)  If x+� ≠ xn+1 or there is still no candidate for x+, then increment n:= n + 1 and 
go back to step 5. 
  d) It is extremely unlikely that you’ll end up here, with more than one tweener 
point. This is the most interesting case of all because it tells us that there is a very 
gentle slope of BER near BER=1e-12. This indicates that something very strange, 
some low probability recurring deterministic event is going on. If you get here, 
then you really do need to perform the full bathtub curve, even if it takes a 
weekend, to figure out what is going on. 

8. If 3e12bits were transmitted without an error in step 4, then set x+ = xn. 
9. If x− is farther from x+ than ∆x, that is, if x+ − x− > ∆x, then set x = x+ − ∆x, i.e., set 

n = (x+−x0)/∆x – 1, and iterate the process by going back to step 5. But, if x+ − x− ≤ 
∆x, then continue to step 10. 

10. You’ve finished the left slope: set xL(1e-12) = ½ (x+ + x−) and repeat steps 1 
through 9 for the right slope to obtain xR(1e-12). 

11. Having obtained xL(1e-12) and xR(1e-12), you have TJ(1e-12) with an accuracy of 
±√2 ∆x. 
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In this paper, we’ve shown that Total Jitter peak-to-peak can be measured on a Bit Error 
Ratio Tester, and introduced a new method that allows us to trade test time versus 
accuracy. 
We provided two different example implementation of our algorithm, and showed that an 
improvement in measurement time of more than a factor of 40 compared to a 
conservative bathtub measurement can be achieved. Typical test times are approximately 
20 minutes at 10Gbit/s, and little more than one hour at 2.5Gbit/s, for a Total Jitter 
measurement that was done at the 1e-12 BER level with a confidence level of better than 
90%. 
Due to the direct measurement approach, accuracy of the results is independent of the 
Total Jitter PDF. This is a significant advantage over other methods based on 
oscilloscopes or time interval analyzers, which fail miserably if the jitter distribution 
doesn’t fit the extrapolation model. 
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