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Abstract

Total Jitter (TJ) at a low probability level can ipeasured directly only on a Bit Error
Ratio Tester (BERT). Many engineers however resoit) techniques that are not BERT
based, mainly because of the prohibitively long sneament times required for a brute-
force high resolution BERT scan. In this paper,describe an optimized technique based
on probability and statistics theory that enablezieate TJ measurements at the 1e-12 bit
error ratio level in about twenty minutes at 10 t&bi
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Introduction

Jitter, in the context of high-speed digital daamsmission, is usually defined as the
deviation of the decision threshold crossing tirha digital signal from its ideal value.
Jitter describes a timing uncertainty, and theeefaas to be considered when we look at
the timing budget of a design. In one sense, jist@ust another component that makes
part of the bit period unusable for sampling, jiks setup- and hold-times. However,
unlike setup- and hold-times that are usually tbghdy specified for logic families and
can be taken from data sheets, jitter is a funaticthe design and has to be measured.

Jitter is caused by a great variety of processegxXample crosstalk, power supply noise,
bandwidth limitations, etc. Therefore there are yndifferent categories of jitter.
Depending on whom you ask, jitter is categorized@mded and unbounded, correlated
and uncorrelated, data-dependant and non-data-dapgmandom and deterministic,
periodic and non-periodic, to just name the mostroon ones. What is undisputed
however is that all the different kinds of jittetcaup to a quantity that is called Total
Jitter (TJ). This is the quantity that you havataount for in your design, and this paper
describes one way to measure it quickly and acelyrat

Our approach uses a Bit Error Ratio Tester (BERIB only instrument available today
that can directly measure TJ peak-to-peak valuesl Titter measurement methods
using BERT scans have been available for a lon¢ewhowever the long measurement
times required for a full scan limited the use hamcterization applications where direct
measurements with good accuracy are required. Byfudaise of statistics and
probability theory, we were able to reduce measerdgrtimes by more than one order of
magnitude.

This paper is organized in four sections: in tihetfand second section, we recall the
basics of jitter and Bit Error Ratio analysis, antloduce the necessary probability
theory. Section three shows how full bathtub mearsents are measured conventionally,
and one common optimization. In the last sectiompnesent the bracketing approach to
Total Jitter measurement, and show two exampleamgphtations.

Jitter
Analog and Digital Definitions of Jitter
There are two definitions of Jitter, an analog ardigital one. In the analog world, jitter
is also known as phase noise, and defined as & plffast that continually changes the
timing of a signal:

S(t) =P(t+ ¢ (1))
where S(t) is the jittered signal waveform, P(tjhis undistorted waveform, arng#lt) is
the phase offset, or phase noise. This definisamast useful in the analysis of analog
waveforms like clock signals, and frequently useehtpress the quality of oscillators.
In the digital world, we’re looking only at the 1&hd 0/1 transitions of the signal, and
jitter is therefore only defined when such a traasioccurs. The jittered digital signal
can be written as

tn = Tn + ¢n



wheret, is the time when the nth transition occurrégs the ideal timing value for the
nth transition, and,, is the time offset of this transition, also knoventhe timing jitter.
Note that there are many possible choicesTfomphysical quantities such as threshold

crossings of a reference clock or a recovered clockrithmetic quantities, like multiples
of the nominal bit duration at the given data rat@s is something to always keep in
mind when making jitter measurements, since resaltsvary dramatically with the
choice of the reference. A drastic example is Sp&zectrum Clocking (SSC), where
low frequency jitter is deliberately introducedkmep emissions in regulated frequency
bands below the allowed maximum; a jitter measurgni@t uses a clean, non-SSC
clock as the reference will show the desired SSfittas

Jitter Categories
Every high-speed digital link in a design is subjecmany jitter sources, each with
different root causes, characteristics, and passiesign solutions. Examples are:

* Inter Symbol Interference (ISI), which is causedatgnuation and bandwidth
limitations of a transmission structure. ISl iuadtion of the data rate, board
layout and material, and the data pattern senttbxeelink. Most multi-gigabit
designs today use transmitter pre-emphasis orvecequalization to deal with
this, and also limit the maximum run-length of éoabus 1s or Os by the use of
8b/10b coding or the like.

* Switching Power Supply Crosstalk, which is causgdmimproperly decoupled
power distribution on a PCB or inside of a chipkzage. The resulting jitter is
periodic with a frequency that is typically manylers of magnitude lower than
the data rate.

* Noise, either thermal noise in the transmitter weweiver chips, or other noise
coupled into the transmission structure. Jittessedlby noise usually has a very
wide bandwidth.

One widely accepted classification system dividesllJitter (TJ) into Random Jitter
(RJ) and Deterministic Jitter (DJ); DJ is thenlfertdivided into correlated Data
Dependent Jitter (DDJ) and uncorrelated PeriodiierJiPJ). Detailed descriptions on
jitter categories and separation techniques cdol@ in [1], [2] and [3].

For most of the analysis in this paper, we will asEJ mixture that consists of a random
part and a periodic part only. The major difficutty TJ measurement stems from the
unbounded nature of RJ, and we wouldn’t gain asight if we added a correlated term
to the Deterministic Jitter.

Jitter as a Time Waveform
The analog jitter definition as a continuous fuotof time is a vivid one, so we're going
to use it in some places in this paper, even thaugjle interested in digital jitter analysis
mostly. We don’t loose anything by that, since \aa simply sample it at regular
intervals later. The Total Jitter continuous timaweform is the sum of all independent
jitter component time waveforms:

J(t) = PJ(t) + RI(t) + DDJ(t) +...
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Figure (1) The Total Jitter time waveform is thensaf the individual components

Figure (1) shows an example for a 10.0ps sinus&datith 2.0 MHz and a 1.5ps rms RJ,
over an observation period of 1us. Since no inséntrexists today that can directly
measure the jitter time waveform, we’re using sited data: a pure sine wave for PJ(t),
and normally distributed random numbers for RJ(t).
In order to assemble the timing budget for a designneed Total Jitter as a single
number in the dimension of time [s]. This is usyallpeak-to-peak value, that is, the
maximum value minus the minimum value:

T = max{J (1)) - min(J (1))
The Total Jitter peak-to-peak for the example guke (1) turned out to be about 31ps.
But unfortunately, this result is not a useful,,, value, because the RJ term describes

an unbounded random process. This means that seevaa min and max values and
thus theTJ,,;, value get larger as we measure for a longer p@fitiche. In the limit, the

minimum is minus infinity and the maximum plus mty, andTJ ., thus infinity
(twice).

Probability Density Functions
The usual way to deal with such a problem is toenade of the fact that the individual
terms are independent. Thus, we can build histogi@nealculate the Probability Density
Function (PDF) for the individual jitter componenasd use a convolution operation to
calculate the Total Jitter PDF:

J(X)=PI(X)CRI(X)CDDI(X)L...
The TJ peak-to-peak value is then the maximum rmwa-grobability PDF value minus
the minimum non-zero PDF value. Figure (2) shovesRBFs for the example above;
TI e IS 31ps, exactly the same value that we got fiieertime waveform.

The PDF has two advantages over the time wavefinsh: it can be measured directly
on many different types of test equipment, for eplEnsampling oscilloscopes, real-time
oscilloscopes, and time interval analyzers. SecthedPDF of a Gaussian process is well
known.
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Thus, we can calculate the Total Jitter PDF, ifkmew the RJ rms value and the PDFs of
all other jitter components. The resulting TJ P@&aver is still non-zero over the whole

definition range, leading to the same infinite &mas meaningles$J,,,, reading that we

got earlier. However, since we're dealing with pabliities anyway, it's easier to define
the TJ,,, values as a function of some sort of probabiktyel.

Cumulative Probability Density Functions
Expressing TJ peak-to-peak as a function of a fimtibalevel can be done easily once
we construct a Cumulative Probability Density Fumec{CDF), by integrating the PDF:

CDF(t) = j'PDF(x)dx

The CDF tells us for each time value the probapihiat the transition happened earlier.
TJ peak-to-peak for a probability level of y istht@e time value where CDF=1-y/2,
minus the time value where CDF=y/2.

Figure (3) shows the TJ CDF for the example abdtie. TJ peak-to-peak value that
includes all but 1e-3 of the population is 28.52psile TJ,,., for 1e-4 is 30.13.

One important thing to note from Figure (3) is thet that we don’t have any CDF
values lower than 1e-5. This is because the plete wenerated using 100,000 random
floating-point values on a computer, and the lovpesisible non-zero PDF and thus CDF
value in this case is 1e-5. From this observatiomédiately follows that we need at least
2/y samples if we want to directly calculdféd,, at probability level y from a measured

PDF. For example, at the probability level of 1etiat is required by many standards, at
minimum 2e12 samples need to be acquired.
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Figure (3) The Total Jitter CDF, using log scalegmbability axis

Total Jitter Calculation from Measured PDFs
As we’ve shown in the last section, many samplesiaeded in order to directly

calculate thelJ,,,, value at low probability levels. Unfortunatelyl &st equipment

existing today that can assemble PDFs from diresgsurements or samples suffers from
low sampling rates, and real-time oscilloscopesiiae high sampling rates need many
sampling passes because of memory limitations. s&inapling rate of 100kHz,
acquisition of 2e12 samples takes more than 236, dayeven an improvement in
sampling rate of a factor of 100 would still make tlirect measurement impractical.
Because of this limitation, TJ readings on oscitgees and time interval analyzers are
usually extrapolated from a PDF that was measusetjwa much lower number of
samples. Many assumptions are made in the exttaggdeand, while they give estimates
of TJ in seconds, the different techniques fregyegive wildly inconsistent results.
When there is no substitute for a genuine measurewithout any assumptions it's
useful to remember that TJ can only be measuretlBIBERT.

Bit Error Ratio

Definition

The quality of a digital transmission system carekgressed most naturally in terms of
how many bits out of a transmitted sequence wergived in error. This is usually done
on a Bit Error Ratio Tester (BERT), a piece of exgtiipment that consists of a reference
quality receiver, expected data generation, aaliggmpare mechanism, and counters for
received bits and errors. During the test, recebieslare compared to the respective
expected bits; each compare operation incremeatsumber of compared bits counter,
and the error counter is incremented for evergthdompare.



The main result of a test is the Bit Error Rati&c@), which is defined as

BER:h

Bits
where N, is the number of errors ard,,, the number of bits. This equation is used
both for measured and actual BER values; the meds@lue approaches the actual BER
in the limit asNg,, — ©.

Bit Error Ratio Measurement as a Binomial Process

The Bit Error Ratio measurement is a perfect exarnpk binomial process: for each bit
that is received in the BERT’s error detector anchpared against the expected data,
there are exactly two possible outcomes: eithebiheas received in error, or not. If we
assume that the errors observed during a BER nezasuat are independent of each
other, and if the conditions don’t change over fime can model a BER measurement
using the Binomial distribution:

N
I:)Binomial (NErr ’ N

o

BER) = —2%_[BERMe= [{1— BER) "o "er
( Bits Err)!

In most practical cases, we’re dealing with low Bitor Ratios and high numbers of

compared bits. For BER<1e-4 am;,,>100,000, the Poisson distribution approximates

the Binomial distribution within double precisioomerical accuracy. It is considerably
easier to evaluate, and has only one governingrpetea &, which is the average number

of errors we expect to observe for a given BER &Rl :
M =BERINg
The PDF of a Poisson distribution for a BER measarg experiment is then

H 1
PPoisson(NErr ’lu) =€ : N | HINEU
Err *

where N, must be an integer, whilg can be any non-negative real number.

Bits ?

Accuracy of Bit Error Ratio Measurements

Knowledge of the Probability Density Function thdascribes BER measurements allows
us to come up with accuracy estimates. As an exgmm@ compare three BER
measurements on a system with an actual BER oRlarld vary only the number of
compared bits:

Nz = 1el2 (u=1). The probability of getting exactly one errorthe test
(which is equivalent to measuring the exact BERe&fl2) is 0.3679
* Ng, = 1el3 @ =10). The probability of getting 10 errors (BER=12} is only
0.1215.
* N, =1el4 (2=100). The probability of getting 100 errors (BER=12) is even
less, namely 0.0399.
Does this mean that the results get better if fevitsrare compared? Exactly the contrary
is the case. Figure (4) shows the discrete PDRh&r =1 and =10 cases. The
absolute probability values are indeed highergarl, but only because there are fewer
possible outcomes.
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Figure (4) Probability Density Functions for a Rois distribution
with ¢ =1 (left) and =10 (right)

Note how, foru =1, the probability of observing zero errors (BER#0exactly the same
as for observing one error (BER=1e-12). For10 however, the probability of no error
is almost zero (4.54e-5). Likewise, the probabitifyobserving two errors fou =1

(BER=2e-12, double the actual value) is 0.1839 tiheipprobability of observing 20
errors in case of: =10 (which is the same Bit Error Ratio) is only@10.

O p=1
x nu=10
< u=100 ||

08
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probability (normalized)

02

9
Bit Error Ratio 12

Figure (5) Normalized Probability Density Functidos Poisson distributions witly =1,
4 =10, andx =100, in terms of Bit Error Ratio rather this.,,

If we repeat the same measurement over and ovar, diga observedN_, values are
distributed with a standard deviation dﬂ . And while this value increases wifh, the
spread in terms of BER decreases (remember thatdgiiRIsy/ divided by Ny, ). In
Figure (5), we plotted the PDFs for three valueg:ofl, 10, 100), using the BER value



rather thanN,, on the x-axis, and normalized the probability ealto unity. The
distribution of measured Bit Error Ratio gets nareo if we increaseu, which is
equivalent to increasing the number of compareslibihe actual BER is constant.

So far, we assumed that the actual BER is knowhdanived accuracy estimates based
on this knowledge. In a real life situation howevbe actual BER is obviously unknown.
So how can we get accuracy estimates after a mexasat, when onlyN;,. and N,

are known? Fortunately, we can simply udg, as an estimator for, and derive the
standard deviation for the measurement from there.

Confidence Levels on Bit Error Ratio Measurements

Quite often, we don’t need to measure the exact,BitiRcan stop the measurement if we
are certain that the BER is above or below a liifitter tolerance test for example, we
need to assert that the device under test opex@tes BER better than for example 1e-
12; whether the true BER is 1.1e-13 or 2.7e-1&e&ddvant.

Our confidence in such an assertion can be exmtésserms of a confidence level. A
confidence level sets a limit on the maximum orimumm of the true value of a quantity,
based on a measurement. If we compare 3.0e12 ibisui getting errors, we can say
that the BER is below 1el2 at the 95% confideneell& his example demonstrates the
power of this approach: we measured a BER of 2rrousing the number of compared
bits and some sensible assumptions, we can benaagsure that the BER is lower than
le-12. How can those confidence levels be derived?

Let's make an example: if we compare 5e12 bitsgaidh single error, how confident can
we be that the BER is <1e-12? The measured BERsrcase is 0.2e-12, which indicates
that the BER is indeed lower that 1e-12, but thasueement was made with a large
uncertainty. Using the Poisson distribution, we calculate the probabilities of
observing zero or one error in 5e12 bits, assunied3ER is exactly 1e12. We evaluate
P(0,5)=0.0067 and P(1,5)=0.0337, so the probalafighserving zero or one error in
5e12 bits if the BER is 1e-12 equals 4.04%. Oufidence that the BER is below 1e-12
is then 95.96%, and we’ve thus set an upper limithe@ Bit Error Ratio.

Table 1 shows statistics for upper and lower lirnitSBER at a confidence level of 95%.
In order to set an upper limit, we need to transhieast y bits with no more than x
errors. In order to set a lower limit, we need étedt at least x errors in no more than y
transmitted bits. The numbers for the upper limigse derived in analogy to the example

above, by solving
NErr

Z I:)(NErr M) =1~ 095

for u; the number of bits required for a given confidefevel of 95% is them: divided
by the target BER. Similarly, the numbers for lowerits can be derived by solving

NErr

ZP(NErr 1) = 095
0

10



Unfortunately, a closed solution for these equaidoesn’t exist, but they can be solved
numerically. A detailed description on an altermatnethod on how to compute
confidence levels using a Bayesian technique cdole in [4].

95% confidence level lower limits, 95% confidence level upper limits,
BER > 10-12 BER < 10-12
Min number of Max number of Max number of Min number of
errors compared bits errors compared bits
(x1el2) (x1e12)
1 0.05129 0 2.996
2 0.3554 1 4.744
3 0.8117 2 6.296
4 1.366 3 7.754
5 1.970 4 9.154
6 2.613 5 10.51
7 3.285 6 11.84

Table 1: Statistics for lower and upper limits oBMBof 10-12, on the 95%
confidence level. To convert to BER of 1eN, jugtlage the exponent “12” with
N.

BER < 1e-12

10

s i
//////%////////////75///////////
/////A’//////////
//////////// ﬁ BER > 1e-12 f
- 7

0 1 2 4 5 6 7

Number of transmitted bits (1012)

Number of errors

Figure (6) The 95% confidence level boundarieuufagper (dark grey) and lower (light
grey) limits on a BER of 1le-12

Using the upper and lower limits given in Table, (k¢ can for each measurement check
whether the BER is below or above 1e-12 at the 86@tidence interval. The minimum
and maximum numbers of bits for low numbers of israye shown graphically in Figure
(6). Note that there is a wide gap where the BESbislose to 1e-12 that we can't really
decide. If we compared 3el2 bits for example, aidgrrors (a measured Bit Error
Ratio of 0.667e-12), we are in the “undecided” wlatea on the graph.

11



In such a case, we need to transmit more bits th@ihumber of bits either reaches the
upper limit (4.744e12), or until we see more errtirthe actual BER is very close to le-
12 however, we are unable to put a lower or uppat bn the BER, no matter how many
bits we transmit. Whether such a test fails or gaestirely depends on the application.

Sample Point Setup on a Bit Error Ratio Tester

Almost every BERT existing today has the abilitysad its reference receiver to arbitrary
decision thresholds and sample delays. Figuren@ys an eye diagram acquired on a
sampling oscilloscope with the definitions of tla@pling delay offset and threshold.
Time values are often shown in unit intervals, whgjust the reciprocal of the bit rate.
For example, at 10Gbit/s, a unit interval equalBdH) By definition, the optimum
sampling point has a time offset of zero. ModerrRBE are able to find the optimum
sample delay offset and threshold automaticallg, @lhsample delay offsets are relative

to this sample point.

Nommal _w»

Sampling Point

Signal level m volts

x =05 fui]

S

x=-0.5 [ui] %
Sampling Delay Otfset [ui]

Figure (7) Eye Diagram measured on a Sampling [@scibpe, with BERT sampling
setup definitions. The nominal or optimum samplapis located in the middle of the
eye diagram

Bit Error Ratio and Jitter
Bit errors can be caused by either logic errothétransmitter itself, or by amplitude

noise and jitter seen by the receiver. Unforturyatplitude noise is indistinguishable
from jitter, which is why all jitter measurementadyses assume that amplitude noise is
negligible. Same for logic errors, if there is am@ of not randomly distributed errors in

a system, jitter analysis cannot work.
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Jitter, in a standard BER test at the optimum samplnt, causes bit errors if the jitter
peak-to-peak value exceeds 1ui, so that the BEBdiver “sees” either the previous or
the next bit. We can also cause error rates by mgoie sample point towards the edge
of the signal. If the sampling point is located @kaat the left edge (at —0.5ui), only the
jitter value and the value of the neighbouringdatermines whether we see an error or
not. The same is true at the right edge. Sincenseabserve an error if the neighbouring
bit is different from the current one, the BERRstsampling point will be equal to half
the transition density.

BERT Scan Plots

The Total Jitter PDF is accumulated over many edgesitions, thus we can in turn place
a TJ histogram on every edge. The BER vs. sampitay offset is then the integral over
the TJ PDF from the optimum sampling point to &if¢ &nd to the right. Figure (8) shows
an example, using the same jitter values that \ed earlier, however this time with a
rectangular PJ rather than a sinusoidal one. Niatiethe maximum BER in this example
is 0.5, since we did the simulation for a randonadmttern. Since the probability of two
identical consecutive bits (the transition density)a random data sequence is one half,
we had to scale the CDF integral by 0.5.

1 1
| >§§< % ) >§< >%
0 0
50 0 50 1 50 0 50 1

Signal Voltage
o
[3,}
Signal Voltage

-100 - 00 -100 - 00
Sampling Delay Offset [ps] o Sampling Delay Offset [ps]
0.04 10
£0.03 £
Q Qo
8 8,10
o 0.02 S 10
s s
©0.01 °
0 107
-100 50 0 50 100 -100 -50 100

Sampling Delay Offset [ps]

0 50
—
10%°
50 0 50

-100 -50 0 50 100
Sampling Delay Offset [ps] Sampling Delay Offset [ps]

Sampling Delay Offset [ps]

o
IS

o
[N}
Bit Error Ratio
=)

Bit Error Ratio

o

Figure (8) Schematic Eye Diagram (top), Jitter éfisam (middle) and BER vs.
sampling delay offset (“bathtub curve”, bottom}iimear scale (left) and logarithmic
scale (right), for a 10Gbit/s signal with 10ps Rd 8psRJ,

Since the PDF is placed on the edge, BER is usoalgsured beyond the /-0.5ui offset;
common values are +/-0.75ui. Such a curve is conyrtermed a “bathtub curve”,
because of its characteristic shape.
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Calculating Total Jitter from Bathtub Curves
Since the BERT Scan curve is related to the Tdttar CTumulative probability Density

Function (CDF), we can derivB],,, values from it. One possibility would be to simply

take the right hand side of the curve, and deheepeak-to-peak value from there, just as
we did earlier with the CDF from measured histoggaBut there is a much more

intuitive possibility: we calculate the intersectiof the left and right branch of the BERT
scan curve with a BER threshold, and get the epaiog or phase margin at this
particular BER level as the difference betweentthe Then, thelJ,,, value equals the

system period minus the phase margin. The beautysflerivation is that we can
immediately relate it to a timing budget: the Talp¢o-peak value is the portion of the
unit interval that is not available for samplingnié need a BER performance better than
the BER threshold used in the calculation.

Figure (9) shows the bathtub curve for the exaraptese, in logarithmic scale and with a
BER level of 1e-12. The intersections are at +48@s, so the phase margin is 48.96ps.
With the system period of 100ps at 10Gbit/s, th&allditter peak-to-peak value equals
51.04ps.

Bit Error Ratio

18 I I I I

1
-80 -60 -40 -20 0 20 40 60 80
Sampling Delay Offset [ps]

Figure (9) BERT Scan or Bathtub curve in logaritbisgale

Obviously, the lower the BER we select for the @ltlation, the higher the TJ peak-to-
peak value will be. This is consistent with theutesswe got from our earlier TJ peak-to-
peak calculations where we used the measured Giesimportant difference between
the results however is that the BER Scan methaahaatically takes the transition
density into account: if consecutive bits in a daggquence are identical, then jitter will
not cause an error, leading to a lower TJ readihgs is a good thing in virtually all
applications, since it is consistent with expeotatifrom a timing budget standpoint.

14



Use of Bathtub Curves beyond Total Jitter Calculation

Most jitter packages based on oscilloscopes or itm&gval analyzers available today
plot bathtub curves, by integrating the extrapalafetal Jitter PDF. Those bathtub
curves cannot possibly capture real bit errorgaat, they will not even detect if you
accidentally crossed data and data bar. Quite aftehip timing is marginal, or if a rare
digital logic error occurs in a design, bathtubvasr can exhibit a BER floor, meaning
that the BER is not zero in the middle of the éyl@s indicates a severe design problem,
and can only be observed on a BERT. If your BERS depture memory or capture
around error capabilities, you can even debug gesign on the digital level, just as you
would do with a logic analyzer.

Measuring the Bathtub Curve

Brute Force

The easiest way to measure a bathtub curve isnplsaan identical number of bits at
equidistant sampling locations. In order to getimum statistical confidence, we need to
measure at least ten times the reciprocal targettar ratio. For example, in order to
measure a bathtub curve down to 1e-12 we needtpa@ 1e13 bits at each sampling
point. A bathtub curve at 10Gbit/s with a 1ps ratioh then takes 41.67 hours.

Number of Errors Optimization

The accuracy of a Bit Error Ratio measurement emxs with the number of errors that
we observe. This means that we’ve measured theBlgh portion of the bathtub, which
we don’t actually need for the TJ measurement, wigih accuracy. One common
optimization for bathtub measurements is therefodanit the acquisition to a certain
number of errors, in addition to the number of .bltsen, all BER values where the
number of errors is reached before the numbertsfdoe measured with the same
accuracy. Figure (10) shows the numbers of comgaitsdor the same bathtub curve as
in Figure (8), using 1e13 compared bits and a gtsydesolution, for three different
settings of the number of errors optimization.

The number of errors optimizations cuts down measent time in the area of the
bathtub curve where error rates are high. This s\dzat the total measurement time
depends on how much jitter is present on the sidgfglre (11) shows how long a
bathtub measurement with 1e13 compared bits and &00rs will take, as a function of
RJ,.. and for three different values &fJ ., . Measurement times decrease almost

linearly with bothRJ, . and DJ,,, , and approach zero as the TJ goes to 1ui.

Note that the durations given are average valuebyall vary slightly due to the
statistical nature of BER measurements. Also, wa'tinclude the time required for
moving the delay on a BERT and the minimum gate tifhese numbers are usually
very low however (in the millisecond range), soytden’t have much influence on
measurement times for all practical cases.
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Figure (10): Number of compared bits vs. samplaydbr a 1ps delay resolution at 10ps
DJ,eand 3psRI,, .. The lower the number of errors setting, the feltr need to be

compared
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Figure (11): Measurement Time VBJ, ., for a 1ps delay resolution and three different
DJ, Values. The higher the Total Jitter, the fasterrtteasurement
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The Fast Total Jitter Algorithm

The major drawback of the number of errors optitndrafor the purpose of TJ
evaluation is that most of the measurement tinspént in the middle of the bathtub,
where the measured BER is zero. Since we takelhefdrmation from the intersections
of the bathtub slopes with a BER threshold, thisnisecessary unless we want to verify
that there is no (or a very low) BER floor. If weegurely interested in the TJ result, it is
sufficient to find the sample delay offsets on lgfeand right slope of the bathtub curve
where the BER is exactly 1e-12. We call these goxn{(1e-12) andx, (1e-12). TJ peak-
to-peak is then simply the bit interval, minus théerence betweernx; and x, .
Unfortunately, since the BERT has a finite delagotation, it is virtually impossible to
set the sampling delay to exactly these points. &reh if it was possible, we would need
to observe an infinite number of bits to prove tihat BER is really exactly 1e-12.

Bracketing Approach

Since we are unable to find a single point on thpeswhere the BER is exactly 1e-12,

we relax our search goal to an interval that brescitein the sense that we are reasonably
sure that the point where BER is equal to 1e-12Jighin the interval. In Figure (12), we
have shown this for the left slope: we search fomgerval [x-, x+] that brackets the

point, where x+ and x- are separated by no mone i desired delay step accuracy of
the TJ measurememtx.

We don't need to know the exact BER values at xd»anit is sufficient to assert that
BER(x-)>1e-12 and BER(x+)<le-12 at a desired camfce level. If we choose 95%, we
have determined that, (1e-12) is within the interval [x-, x+] with a cadénce level of

at worst 90%. For lack of better knowledge, we assthatx, is in the middle of the
bracketing interval. Since the distance betweesnxt x+ isAx, X, is accurate to +/-
0.5Ax. Repeating the procedure for the right slope efitathtub curve yields, with the
same accuracy, and we can calculate TJ peak-totheaame way we did before, with
an accuracy of +h/ 21X .

10° {
10710 1
101 1
1012 ¢ 1
1053 1

104 |

x ,\'L(lb -1 \

Figure (12) Definitions for the bracketing apbfo;anh the left slope lower BER region
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Search Strategies

There are many possible algorithms to search firtterval [x-, x+]. Things to keep in
mind during the implementation of a fast Totalelitheasurement using the bracketing
approach are:

Measurement times increase with decreasing BERyatdhe search should be
performed from left to right for the left edge, anoim right to left on the right
edge. The main goal of the search algorithm isitormze the number of failed
attempts to find x+. At 10Gbit/s it takes about Brto compare 3el2 bits — the
biggest investment in the process

Once x- has been determined, x+ is often withirbecause of the steep slopes of
the bathtub curve at low BER values

The search lends itself well to an iterative prac&ge continue to refine the
search steps until we’ve reduced the interval éoddsired accuracy. The
measurement times can be traded in a well-defirdagainst measurement
accuracy

In order to get better initial values for the séaitis a good idea to perform a
relatively fast complete bathtub scan. From the,dae can get reasonable first
guesses for x- and x+, either directly or by fitizn inverse error function to the
data

If the device under test has a BER floor, the deaan be stuck because the BER
never gets below 1e-12. A robust implementationtbascount for this.

Example Implementation One: Linear Search
In this section, we present a simple example implaation of the Fast TJ measurement
algorithm, using a linear search with constant siee.

1.

Choose the desired uncertainty of the TJ measant o TJ, and determine the
delay step accuracy required for this:
— Jr‘]/?
2
Starting at the optimum sample point, move tERB analyzer sample delay to —
0.75ui.
Compare data until you observe at least one,@raintil the number of
compared bits exceeds 2.996e12.
If you stopped because of an error, check timebeun of bits compared so far:

- if Ng,<0.05129e12, the BER is >1e-12 at the 95% level vem set x- to the

current delay. Increase the sample delajkyand continue with step 3.

- else, we are in the “undecided region”. Incecthe sample delay ik, and
continue with step 3. If you end up here again bdhtub either has a BER floor,
or the slope of the bathtub is so gentle that weuaable to find x- and x+ that
satisfy our accuracy requirement.

If you stopped because you reached the 2.996ait2vithout a single error, the
BER is lower than 1e-12 at the 95% confidence |eaedl we set x+ to the current
delay. Calculatex, (1e-12). We are done with the left slope, and caiwith

step 6.

AX
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6. Continue through steps 2 and 5, this time witlngial delay of +0.75, and with
decreasing delay. This gives the x+ and x- valoestie right slope of the bathtub
curve. Calculatex; (1e-12).

7. Calculate TJ, measurement finished.

30 T T T T T
—— DJpkpk 0.0 ps
***** DJpkpk 15.0 ps
DJpkpk 30.0 ps
251 ! B
20 B

Measurement Time [min]
@

o

I
—— DJpkpk 0.0 ps
----- DJpkpk 15.0 ps
18 DJpkpk 30.0 ps H

Measurement Time [min]
=

0 1 L ! ! 1 I \\\-. I
0 1 2 3 4 5 6 7 8
RJ ¢ [ps]

ms

Figure (13) Measurement Time \&J, ., for 1ps (top) and 5ps (bottom) delay resolution
and three differenDJ, values
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Average measurement times for this implementatiergaven in Figure (13). Note that
measurements times with the bracketing approachdarstrictly repeatable, since at
lower BER values the time until the first errooisserved is randomly distributed. We've
done the simulations using the average time betwa®ens; variations will be averaged
out in most real measurements.

For low RJ values, the measurement is complete afi@ut 10 minutes, independent of
DJ. Because of the very steep slopes in low Ratsiios, only one measurement at low
BER needs to be done per slope. The measuremenigitnen dominated by the time
required to compare 2.996e12 bits (5min), oncesfmgre. This is independent on the
delay resolution used: the minimum test time atdi@&is always 10min, no matter how
coarse the resolution is.

For increasing RJ values, measurement time goégeguse more points are located on
the slope of the bathtub curve. The saw tooth shrathes region is really an indication
of the random variability of the measurement tihentirely depends on how many
points are located on the slope, and where. Therlogsolution setting hits fewer points
on the slope, so the measurement completes eaifedecreasing resolution.

For high RJ values, test time quickly drops to atraero, depending on the DJ value. If
the total jitter exceeds 1ui, the bathtub is closed the algorithm fails because no points
with BER<1e-12 can be found. But this is detectedyf quickly, unlike in a

conventional bathtub measurement.

From Figure (13), we get an average measuremeatdfrabout 15-20 minutes, at
10Gbit/s and with a 1ps delay step resolution. &yjgarison with Figure (11), we find
that the bracketing approach reduces measuremess tiy about a factor of 40-100,
depending on RJ and DJ values, and a good portilucia

Example Implementation Two: Binary Search

Our second example implementation is more sophistit a full bathtub curve with a

low number of bits that completes in a minute isdu® get initial estimated as to where

the bracket points might be. The actual brackeggreen found by using binary search,

dynamically adjusting the step size until the desimccuracy is reached.

This example is given mostly to show what's possibite benefit in terms of

measurement time saved over the simple implementdgpends entirely on the shape of

the bathtub curve.
1. Choose the desired uncertainty of the TJ measng o TJ, and determine the

delay step accuracy required for this:

— Jr‘]/?

V2

2. Measure a complete bathtub curve with a stepdiax, using 1e9 bits and 1e3
errors

3. Make your first guess for: to determine which of the delay settings can $elu
as your first guess for use Table 1. For example, if at the last time-ylsktting
of the fast bathtub two errors were observed, Tredrie 1 says that for two errors
the maximum number of transmitted bits consistatit BER>1e-12 at the 95%
confidence level is 0.3554e12; since 1e9 bits waresmitted we have BER>1e-
12 with much better than 95% confidence. Define x and sek- = X, the first
guess for the left bracket.

AX
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Oncex is defined, then data will be acquired at timeagledettings¢, = %o + nx, be
prepared to keep track of the number of errorsatietieand bits transmitted at each of
these delay settingd\e, Naits)-

4. Try to get your first candidate far: Extrapolate the left slope of the bathtub
down to le-1dy fitting a complimentary error function in theuas way (this is
the standard bathtub plot technique for estimatihgvith a BERT). Determine
the number of stepsg, from X, that givex, closest toc. That is, seh to the
closest integer to (X Xp)/Ax (things should go a little faster if you err o ide
of higher BER, that is, round down). Set the tiretag tox, = X + NAX.

5. With the delay at,, transmit bits until either an error is receive®®96<10"
bits are transmitted without an error.

6. If an error is detected in step 5: use Table determine if you have a new lower
limit, BER>1e-12. If you have a new lower limiteiin setx- = x, and seti:= n+1
and go back to step 5. If you can’t get a new lokweit, then continue to step 7.

7. Tweener situation: If an error is detected @psi but the total number of errors
for the number of transmitted bits at the detgis too small to give the lower
limit, BER>1e-12, then we find ourselves in the gapween the shaded regions
of Figure (6). This is the annoying “tweener sitoat that almost never occurs
but any decent algorithm must account for. Whileaing, it's not too bad a
place to be becausgis probably very close tx(1e-12).

Continue to transmit bits until you either get d@sterror or have transmitted a
total of 3.3e12 bits at,. If you get an error go back to step 6, if you'tdahen
you have between one and six errors,Ngr < 6, atx, and are firmly set in the
tweener region anx}, is the tweener-delay.

The idea at this point is to make sure that xealy consistent witk(1e-12). If
so, then we’ll use it, if not, we’ll use somethiliige it, but flag the result with a
larger uncertainty and glean some useful infornmatio

a) If x- =xn-1 and x+= xn+1, then set xL(10-12) = xn and go to step 9.

b) If x-# xn-1, then decrement n:= mnd go to step 4.

c) If x+# xn+1 or there is still no candidate for x+, thearement n:=n + 1 and
go back to step 5.

d) It is extremely unlikely that you'll end upree with more than one tweener
point. This is the most interesting case of allduse it tells us that there is a very
gentle slope of BER near BER=1e-12. This indic#ftas something very strange,
some low probability recurring deterministic evengoing on. If you get here,
then you really do need to perform the full bathtubve, even if it takes a
weekend, to figure out what is going on.

8. If 3el2bits were transmitted without an errostiep 4, then set = xn.

9. If x_is farther fromx, thanAx, that is, ifx, —x_> Ax, then sek = x, — Ax, i.e., set
n = k:—xo)/Ax — 1, and iterate the process by going back toSst&ut, ifx, — x-<
Ax, then continue to step 10.

10. You've finished the left slope: se(le-12) = Y2 X% + x-) and repeat steps 1
through 9 for the right slope to obtaig(1e-12).

11. Having obtained, (1e-12) andg(le-12), you have TJ(1e-12) with an accuracy of
+V2 AX.
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Conclusion

In this paper, we've shown that Total Jitter peadpéak can be measured on a Bit Error
Ratio Tester, and introduced a new method thatvalles to trade test time versus
accuracy.

We provided two different example implementatioroaf algorithm, and showed that an
improvement in measurement time of more than afaxft40 compared to a
conservative bathtub measurement can be achieypatal test times are approximately
20 minutes at 10Gbit/s, and little more than onerlad 2.5Gbit/s, for a Total Jitter
measurement that was done at the 1e-12 BER letelardonfidence level of better than
90%.

Due to the direct measurement approach, accuraityeotsults is independent of the
Total Jitter PDF. This is a significant advantagerother methods based on
oscilloscopes or time interval analyzers, whichaserably if the jitter distribution
doesn't fit the extrapolation model.
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